CS 563 Advanced Topics in Computer Graphics *Realistic Transparency*

by Nik Deapen

Topics

- Fresnel Equations
- Color Filtering
- Implementation
- Some Topics
- Photon Mapping and Caustics

Fresnel Equations

- In Chapter 27 kr and kt were constant
 - now they depend on the incidence angle and the relative dielectric constants

$$r_{||} = \frac{\eta \cos \theta_{i} - \cos \theta_{t}}{\eta \cos \theta_{i} - \cos \theta_{t}}$$
$$r_{i} = \frac{\cos \theta_{i} - \eta \cos \theta_{t}}{\cos \theta_{i} - \eta \cos \theta_{t}}$$
$$\eta = \frac{\eta_{in}}{\eta_{out}}$$
$$k_{r} = \frac{r_{||}^{2} + r_{i}^{2}}{2}$$
$$k_{t} = 1 - k_{r}$$

Simple vs Dielectric (Fisheye)

Special Cases

 When you shoot from the direction of the normal (Normal Incidence)

$$r_{||} = \frac{\eta - 1}{\eta + 1}$$

$$r_{i} = -\frac{\eta - 1}{\eta + 1}$$

$$k_{r} = \frac{\eta - 1^{2}}{\eta + 1^{2}}$$

$$k_{t} = \frac{4\eta}{n + 1^{2}}$$

- When perpendicular to the normal (Grazing Incidence)
 - kr = 1
 - kt = 0

Total Internal Reflection

- Fresnel Equations Not Valid Here
 - kr = 1
 - kt = 0

Color Filtering

- Radiance Attenutation

$$\frac{dL}{L} = -\sigma dx$$
$$L(d) = L_0 e^{-\sigma d}$$
$$L(d) = c_f^d L_0$$

- Cf = Color Filter
 - No Color Filter -> RGB = (1,1,1)
 - Green Tint Color Filter -> (.9,1,.9)
 - note .9 depends on your coordinate system

Color Filtered Spheres

Implementation

- Implement DielectricTransparentMaterial
- Heirarchy
 - IMaterial
 - Abstract Material
 - AbstractRetransmittedMaterial
 - AbstractReflectiveMaterial
 - PerfectSpecular
 - GlossySpecular
 - AbstractTransparentMaterial
 - SimpleTransparentMaterial
 - DielectricTransparentMaterial
 - Phong
 - Matte

Implementation Continued

Memory

n_{in}

Function

- Hit
 - Obtain Ray->n_{out}
 - Compute Fresnel Reflectance and Transmission
 - Compute Reflected Ray and Transmitted Ray (ch27)
 - Compute Color
 - Trace the Transimttance
 - Set Ray->n_{out} to n_{in}
 - Return ColorTraced * Color Filter^distance to hit point
 - Trace the Reflectance
 - Normal Perfect Specular Trace
 - Combine the Colors with kd and kf

Triangle Meshes

C:\Users\Nik Deapen\Desktop\Chapter28\Ray Traced Images 28\Figure28.12(a).jpg		C:\Users\Nik Deapen\Desktop\Chapter28\Ray Traced Images 28\Figure28.12(b).jpg	
		n\Dockton\Chapter28\Bay	
Traced Images 28\F		Figure28.12(c).jpg	

Meshes

C:\Users\Nik Deapen\Desktop\Chapter28\Ray	✓ C:\Users\Nik Deapen\Desktop\Chapter28\Ray
Traced Images 28\Figure28.14.jpg	Traced Images 28\Figure28.13(b).jpg
C:\Users\Nik Deapen\Desktop\Chapter28\Ray	C:\Users\Nik Deapen\Desktop\Chapter28\Ray
Traced Images 28\Figure28.13(a).jpg	Traced Images 28\Figure28.13(c).jpg

Boxes and Glass Pane (Skipping Most Theory)

Glass of Water (or Beer)

- Cannot model seperately
 - Not with his framework
- Why?
 - Need a perfect transition to Glass and Water
 - to give η
- Model as a single compound object
 - Cylinders and Disk
 - Cylinders and Part Tori
- Fishbowls modeled the Same Way

Glass of Water

Photon Mapping and Caustics

- Algorithm
- Photons
- Photon Emission
- Photon Tracing
- Storage and Retreival

2-Pass Algorithm

- 1. Send the Photons out from the Lights
- 2. Trace the scene, gather photons to compute radiance flux at each point

What is a Photon?

Position

- not tied to an object
- Color
 - Color of the photon (usually white)
- Angle

 direction the photon was traveling stuct photon { (given by Jensen)

float x,y,z; // position short flag;

- char p[4] // color packed as 4 chars
- char phi, theta, // compressed incidence dir

// flag used by kd tree

```
}
```

Photon Emission

- Point Lights
 - Pick a Random Direction
 - Not as easy as picking a (rho, theta)
- Area Lights
 - Pick a Random Point
 - Pick a Random Direction (Cosine Distribution)
- Projection Maps
 - Yes or No Projections
 - Specific Projections

Photon Tracing

- Same as Ray Tracing
 - (and global illumination)
- Bouncing
 - If ray hits a non-reflective object it can bounce
 - in a direction given by the objects BRDF
 - with a probability (k) given by the BRDF
 - the power of the reflectance
 - this makes all the photons have the same power

Photon Storage and Retreival (KD Tree)

Construction

- After all the photons have been traced
- Algorithm
 - Take a midpoint of all the photons in a direction
 - Split the tree at this point
 - Recursively iterate until some depth
 - depends on how many photons you want per bucket
- Retreival
 - Algorithm
 - Get the bin with the given hit point
 - if all the n closest are in the bin
 - return those
 - Get all the bins around it (8)
 - return the n closest from all 27

Radiance Estimate

Collection

- Sphere N Closest within a sphere
- Disk N Closest within a disk
 - (with a given normal)
- Filtering
 - Cone
 - d / kr
 - d = distance
 - r = maximum distance
 - Gaussian
 - <<enter really complex Gaussian formula here>>

Participating Media

- Color Filtering
- Ray Marching
 - Adaptive
 - dx = log(rand()) / sigma(density(x))
- Volume Photon Map

Optimizations

Exclude Direct Illumination

References

- Ray Tracing From the Ground Up
 - Kevin Suffern
- Realistic Image Synthesis Using Photon Mapping
 - Henrik Wann Jensen