CS 563 Advanced Topics in Computer Graphics Realistic Transparency

by Nik Deapen

Topics

- Fresnel Equations
- Color Filtering
- Implementation
- Some Topics
- Photon Mapping and Caustics

Fresnel Equations

- In Chapter 27 kr and kt were constant
- now they depend on the incidence angle and the relative dielectric constants

$$
\begin{gathered}
r_{\|}=\frac{\eta \cos \theta_{i}-\cos \theta_{t}}{\eta \cos \theta_{i}-\cos \theta_{t}} \\
r_{土}=\frac{\cos \theta_{i}-\eta \cos \theta_{t}}{\cos \theta_{i}-\eta \cos \theta_{t}} \\
\eta=\frac{\eta_{\text {in }}}{\eta_{o u t}} \\
k_{r}=\frac{r_{\|}^{2}+r_{土}^{2}}{2} \\
k_{t}=1-k_{r}
\end{gathered}
$$

Simple vs Dielectric (Fisheye)

Special Cases

- When you shoot from the direction of the normal (Normal Incidence)

$$
\begin{aligned}
& r_{\|}=\frac{\eta-1}{\eta+1} \\
& r_{土}=-\frac{\eta-1}{\eta+1} \\
& k_{r}=\frac{\eta-1^{2}}{\eta+1^{2}} \\
& k_{t}=\frac{4 \eta}{n+1^{2}}
\end{aligned}
$$

- When perpendicular to the normal (Grazing Incidence)
- $k r=1$
- kt $=0$

Total I nternal Reflection

- Fresnel Equations Not Valid Here
- kr = 1
- kt = 0

Color Filtering

- Radiance Attenutation

$$
\begin{gathered}
\frac{d L}{L}=-\sigma d x \\
L(d)=L_{0} e^{-\sigma d} \\
L(d)=c_{f}^{d} L_{0}
\end{gathered}
$$

- Cf = Color Filter

- No Color Filter $->$ RGB $=(1,1,1)$
- Green Tint Color Filter -> (.9,1,.9)
- note - .9 depends on your coordinate system

Color Filtered Spheres

I mplementation

- Implement DielectricTransparentMaterial
- Heirarchy
- IMaterial
- Abstract Material
- AbstractRetransmittedMaterial
- AbstractReflectiveMaterial
- PerfectSpecular
- GlossySpecular
- AbstractTransparentMaterial
- SimpleTransparentMaterial
- DielectricTransparentMaterial
- Phong
- Matte

I mplementation
 Continued

- Memory
- $\mathrm{n}_{\text {in }}$
- Function
- Hit
- Obtain - Ray-> $\mathrm{n}_{\text {out }}$
- Compute Fresnel Reflectance and Transmission
- Compute Reflected Ray and Transmitted Ray (ch27)
- Compute Color
- Trace the Transimttance
- Set Ray-> $\mathrm{n}_{\text {out }}$ to $\mathrm{n}_{\text {in }}$
- Return ColorTraced * Color Filter^distance to hit point
- Trace the Reflectance
- Normal Perfect Specular Trace
- Combine the Colors with kd and kf

Triangle Meshes

x C:IUsersINik DeapenlDesktoplChapter28IRay Traced Images 28IFigure28.14.jpg	x C:IUsersINik DeapenlDesktoplChapter28IRay Traced Images 28IFigure28.13(b).jpg
C:IUsersINik DeapenlDesktoplChapter28\Ray Traced Images 28IFigure28.13(a).jpg	C:IUsersINik DeapenlDesktoplChapter28IRay Traced Images 28IFigure28.13(c).jpg

Boxes and Glass Pane (Skipping Most Theory)

Glass of Water (or Beer)

- Cannot model seperately
- Not with his framework
- Why?
- Need a perfect transition to Glass and Water
- to give n
- Model as a single compound object
- Cylinders and Disk
- Cylinders and Part Tori
- Fishbowls modeled the Same Way

Glass of Water

- Algorithm
- Photons
- Photon Emission
- Photon Tracing
- Storage and Retreival

2-Pass Algorithm

1. Send the Photons out from the Lights
2. Trace the scene, gather photons to compute radiance flux at each point

What is a Photon?

- Position
- not tied to an object
- Color
- Color of the photon (usually white)
- Angle
- direction the photon was traveling
stuct photon \{ (given by Jensen)
float x, y, z; // position
char p[4]
// color packed as 4 chars
char phi, theta, // compressed incidence dir
short flag; // flag used by kd tree

Photon Emission

- Point Lights
- Pick a Random Direction
- Not as easy as picking a (rho, theta)
- Area Lights
- Pick a Random Point
- Pick a Random Direction (Cosine Distribution)
- Projection Maps
- Yes or No Projections
- Specific Projections

Photon Tracing

- Same as Ray Tracing
- (and global illumination)
- Bouncing
- If ray hits a non-reflective object it can bounce
- in a direction given by the objects BRDF
- with a probability (k) given by the BRDF
- the power of the reflectance
- this makes all the photons have the same power

Photon Storage and Retreival (KD Tree)

- Construction
- After all the photons have been traced
- Algorithm
- Take a midpoint of all the photons in a direction
- Split the tree at this point
- Recursively iterate until some depth
- depends on how many photons you want per bucket
- Retreival
- Algorithm
- Get the bin with the given hit point
- if all the n closest are in the bin
- return those
- Get all the bins around it (8)
- return the n closest from all 27

Radiance Estimate

- Collection
- Sphere - N Closest within a sphere
- Disk - N Closest within a disk
- (with a given normal)
- Filtering
- Cone
- d / kr
- d = distance
- $\mathrm{r}=$ maximum distance
- Gaussian
- <<enter really complex Gaussian formula here>>

Participating Media

- Color Filtering
- Ray Marching
- Adaptive
- $\mathrm{dx}=\log (\mathrm{rand}())$ / sigma(density(x))
- Volume Photon Map

Optimizations

- Exclude Direct Illumination

References

- Ray Tracing From the Ground Up
- Kevin Suffern
- Realistic Image Synthesis Using Photon Mapping
- Henrik Wann Jensen

